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 An experimental investigation of the critical conditions for fluidelastic instability is
 presented for a parallel triangular tube array with a pitch-to-diameter ratio of 1 ? 57 .  The
 array was subjected to water cross-flow with partial admission and 10 test series were
 conducted with dif ferent support locations along the tubes ,  in order to vary their natural
 frequencies and mode shapes .  In this way ,  the influence of cross-flow with partial
 admission ,  as a particular case of nonuniform cross-flow ,  could be studied systematically .  A
 variety of the response curves obtained apparently exhibit more than one critical flow
 velocity for each mode of vibration ,  so that when representing all the data in a stability
 map ,  up to three instability regions are shown for the lower range of the mass-damping
 parameter .  However ,  the low vibration amplitudes observed for the lower two regions
 suggest that they may not be of practical importance in engineering practice .  The data
 obtained are compared to stability boundaries proposed in the technical literature .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 B U N D L E S   O F   T U B E S   S U B J E C T E D   T O   C R O S S - F L O W  may vibrate due to a number of dif ferent
 excitation mechanisms ,  usually classified as turbulence buf feting ,  vortex shedding (with
 structural or acoustic resonance) and fluidelastic instability (Weaver & Fitzpatrick
 1988) .  The latter is recognized to be the mechanism most likely to cause industrial heat
 exchanger tube damage and it is characterized by the development of large amplitude
 oscillations ,  at one of the low natural frequencies of the tubes ,  when the cross-flow
 velocity exceeds a certain critical value .  The exact nature of the instability mechanism ,
 however ,  may vary from case to case depending on the array geometry and fluid .
 Researchers usually distinguish between damping-controlled or stif fness-controlled
 mechanisms ,  which require one or more than one degree of freedom ,  respectively
 (Chen 1983 ;  Paı ̈ doussis & Price 1988) .

 Although a number of theoretical models have been proposed to explain the
 phenomenon (Price 1995) ,  the design of heat exchangers against fluidelastic instability
 continues to be based on correlations of laboratory data .  A general expression for
 these correlations is

 V

 fd
 5  K S  m d

 r d 2 D a

 ,  (1)

 where  V  is the critical velocity ,   f  ,  the frequency of vibration ,   d ,  the outside diameter of
 the tubes ,   m ,  the mass of the tubes per unit length (including added mass) ,   r  ,  the fluid
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 density ,  and  d  ,  the logarithmic decrement of damping of the tubes .  The ratio  m d  / ( r d 2 )
 is usually referred to as the mass-damping parameter .  The most commonly used
 correlations assume  a  5  0 ? 5 (Pettigrew & Taylor 1991) ,  in agreement with Connors’
 (1970) theory .

 The use of equation (1) is restricted to cases with uniform flow across the total length
 of the tubes .  Tube arrays of real heat exchangers have multi-span tubes subjected to
 nonuniform cross-flow ,  with distribution  V c  ( x ) ,  and for this practical case ,  equation (1)
 with  a  5  0 ? 5 was extended theoretically (Franklin & Soper 1977 ;  Blevins 1977 ;  Connors
 1978 ;  Pettigrew  et al .  1978) to give
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 where subscript  i  refers to the  i th mode of vibration of the tubes and  f i ( x ) is the
 corresponding mode shape function .

 Recent wind tunnel investigations on multi-span tube arrays (Waring & Weaver
 1988 ;  Weaver & Goyder 1990 ;  Weaver & Parrondo 1991) showed that ,  in many cases ,
 equation (2) provides a reasonable engineering approximation .  However ,  Weaver &
 Parrondo (1991) also tested a number of cases with partial admission (uniform flow
 across only one span of the tubes and no flow on the rest) for which equation (2) either
 failed to predict the critical modes observed or gave critical velocity predictions that
 were up to 70% unconservative when using coef ficient  K  5  3 ? 3 (and  V  the pitch
 velocity) .  Weaver & Parrondo suggested an alternative design expression that always
 gave the correct mode predictions ,  even when equation (2) failed ,  namely
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 where  l 1  and  l 2  are the limits of the span subjected to cross-flow and  K  and  a   depend
 on the array geometry .  Equation (3) is just the extension of equation (1) to the case of
 uniform cross-flow with partial admission on the tubes (Weaver & Goyder 1990) and in
 such case ,  if  a  5  0 ? 5 ,  equation (3) reduces to equation (2) .   S i   is called the energy
 fraction since it represents the ratio of the kinetic energy of the span subjected to
 uniform cross-flow to that of the whole tube .  The values used for  a   and  K  were those
 proposed by Weaver & Fitzpatrick (1988) for each dif ferent array geometry ,  based on
 an empirical fit of the data reported in the technical literature .  In particular ,  the
 exponent  a   recommended by these authors was always less than 0 ? 5 ,  although it was
 close to 0 ? 5 for square and rotated square arrays .

 For the low range of the mass-damping parameter (water cross-flow) the experimen-
 tal data available in the literature are sparse and virtually restricted to the case of
 uniform cross-flow .  However these data suggest that the reduced critical velocity for
 fluidelastic instability is essentially independent of the mass-damping parameter for
 values of the latter less than about 0 ? 3 (Weaver & Yeung 1984 ;  Weaver & Fitzpatrick
 1988) .  Additionally ,  for these low values of the mass-damping parameter ,  some of the
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 theoretical models proposed for fluidelastic instability ,  such as those due to Lever &
 Weaver (1982) ,  Chen (1983) or Price & Paı ̈ doussis (1986) ,  predict the existence of
 multiple instability regions ,  i . e .,  more than one critical velocity for each value of the
 mass-damping parameter .  In fact ,  Chen & Jendrzejczyk (1983) reported a stability map
 with a secondary instability region (two critical velocities) ,  obtained from tests on a
 single row of tubes subjected to water cross-flow .  More recently Andjelic ́   et al .  (1992) ,
 who conducted wind tunnel experiments on a normal triangular tube array with a
 pitch-to-diameter ratio of 1 ? 25 and with variable damping ,  obtained a stability map
 with three critical velocities for each value of the mass-damping parameter .  On the
 other hand ,  Paı ̈ doussis  et al .  (1995) have argued that the multiple stability regions have
 no practical significance .

 The above discussion indicates that tube arrays subjected to a cross-flow of heavier
 fluids such as water show dif ferent stability behaviour than those operating at higher
 mass-damping parameters .  Additionally ,  equation (2) is commonly used to extend
 stability data obtained from uniform flows to cases of nonuniform flow distributions ,
 and there exists no published data which validates such an extension for low
 mass-damping parameter arrays .  The purpose of the research reported in this paper
 was to overcome these deficiencies .  Water tunnel results are presented for the
 fluidelastic instability of a parallel triangular tube array with a pitch-to-diameter ratio
 of 1 ? 574 .  The tubes were subjected to a water cross-flow with partial admission ,  i . e .
 there was uniform flow across a portion of their total length ,  while the remaining
 portion was immersed in still water .  Tests were conducted with dif ferent support
 locations along the tubes ,  thus varying their natural frequencies and mode shape
 functions ,  in order to study the influence of the nonuniform cross-flow distribution on
 the critical conditions for fluidelastic instability .  The results obtained are compared to
 the stability boundaries of design criteria proposed in the literature .

 2 .  EXPERIMENTAL EQUIPMENT

 The water tunnel facility used for this investigation is shown schematically in Figure 1 .
 The flow was provided by a centrifugal pump driven by a 50  kW motor with speed
 regulated by a frequency controller .  The flow was passed through a settling chamber
 followed by a nozzle with a contraction ratio of 9 : 1 ,  so that a flat velocity profile was
 obtained at the entrance of the test-section for any flow rate .  The acrylic test-section
 was 68  mm wide and 200  mm high (internal dimensions) .  Transmission of vibrations
 from the pumping system to the test-section was avoided by using flexible hoses in the
 ducts .

 The tube bundle tested was a parallel triangular array with a pitch-to-diameter ratio
 of 1 ? 574 and six rows of tubes .  The tubes were brass with an outside diameter of 10  mm
 and 0 ? 5  mm wall thickness .  There were 12 flexible tubes that filled the four central
 columns of the array (Figure 2) .  A 10  mm inside-diameter ring with exterior thread was
 welded at one end of each flexible tube ,  so that these tubes could be screwed into a
 30  mm thick brass plate ,  provided with suitable holes that followed the pattern of the
 array .  In this way the tubes could be considered clamped at the plate ,  with a 0 ? 679  m
 cantilever length from the clamping point (Figure 3) .  The array was completed with six
 half-tubes as shown in Figure 2 .  One end of these half-tubes was welded to the plate
 where the flexible tubes were screwed ,  and the other end was welded to another 20  mm
 thick brass plate with a window large enough for the flexible tubes to pass through
 without contact .

 The assembly formed by the plates and the half-tubes could be inserted through and
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 Figure 1 .  Schematic of the water tunnel facility .

 fixed at the bottom surface of the working section ,  so that water could not leak and the
 flexible tubes could easily be instrumented from the outside of the test-section .  The
 tube bundle was mounted vertically in the test-section and was subjected to a uniform
 water cross-flow along 200  mm starting at 20  mm over the clamping point (Figure 3) .
 The test-section had a prismatic chamber on the upper side so that the span of the
 tubes that was not subjected to water cross-flow was immersed in still water .  The mass

30°

Flow

p

d

 Figure 2 .  Cross section of the tube array ( d  5  10 mm ,   p  5  15 ? 7 mm) .
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 Figure 3 .  Schematic of the mounting of the tubes in the test section (dimensions in mm) .

 ratio between tubes and water was  m A / r d 2  5  1 ? 26 ,  where  m A   is the mass per unit
 length of the tubes without inclusion of the added mass .

 Additionally ,  another thin brass plate was made which had 10  mm diameter holes cut
 in the array pattern with an edge width of 0 ? 5  mm ,  in order to provide a simple support
 for the tubes .  That plate could be rigidly fixed at the walls of the prismatic chamber ,  at
 any position along the tubes .  Experiments were done on nine dif ferent positions of the
 simple support plate ,  plus another case for which the tubes were cantilevered .  The ten
 configurations tested are listed in Table 1 .

 T ABLE  1
 Characteristics of the tube array tested and measurements in still fluid

l1 l2  1st mode frequency  Damping Log .  dec .
 Air  Water  Air  Water

 Test  l 1  l 2  f A , 1  f W , 1  d A  d W
 (m)  (m)  (Hz)  (Hz)

 A  0 ? 0  0 ? 679  14 ? 1  10 ? 8  0 ? 007  0 ? 080
 B  0 ? 271  0 ? 408  30 ? 2  23 ? 0  0 ? 008  0 ? 089
 C  0 ? 286  0 ? 393  31 ? 5  23 ? 4  0 ? 016  0 ? 120
 D  0 ? 317  0 ? 362  35 ? 5  27 ? 7  0 ? 011  0 ? 060
 E  0 ? 401  0 ? 278  52 ? 7  40 ? 8  0 ? 015  0 ? 063
 F  0 ? 526  0 ? 153  87 ? 5  65 ? 5  0 ? 007  0 ? 069
 G  0 ? 557  0 ? 122  85 ? 4  64 ? 8  0 ? 018  0 ? 104
 H  0 ? 592  0 ? 087  80 ? 0  64 ? 0  0 ? 011  0 ? 084
 I  0 ? 617  0 ? 062  74 ? 1  55 ? 2  0 ? 015  0 ? 071
 J  0 ? 666  0 ? 013  64 ? 4  49 ? 0  0 ? 008  0 ? 078
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 For each test ,  one tube was instrumented with two Kulite GY-50 miniaccelerometers
 orthogonally mounted in a nylon carrier ,  which could be introduced into the tube from
 the outside of the test-section as explained above .  They were oriented so that one of
 them measured the vibrations streamwise and the other one in the transverse direction .
 The acceleration signals were processed with a HP-3562A two-channel dynamic signal
 analyzer ,  which calculated their averaged r . m . s .  spectra and permitted integration to
 obtain displacements .  The approach flow velocity was measured with a pitot-static
 probe located 0 ? 15  m upstream of the tube bundle ,  which could be connected either to
 a Validyne DP15 dif ferential pressure transducer or to an inclined manometer with
 mercury ,  depending on the pressure range .  The error estimated for the flow velocity
 measurements was less than 2 ? 5% for velocities greater than 0 ? 5  m / s .

 A preliminary series of tests was conducted to check on the nature of the vibrations
 of the tubes .  A Kistler 601A miniature piezoelectric pressure transducer was
 introduced into one of the tubes ,  in a way similar to that of the accelerometers ,  and it
 was located close to a 0 ? 5  mm diameter hole ,  so that the fluctuations of the pressure
 acting on the tube at the position of the hole could be measured and recorded
 (Parrondo 1992) .  First ,  all the flexible tubes of the array were attached to one another
 and to the internal walls of the test-section ,  so that they could be considered ef fectively
 rigid .  It was found that in such a case ,  and for dif ferent positions and orientations of
 the tube that contained the pressure transducer ,  no significant peaks were observed in
 the pressure spectra over the entire range of flow velocities ,  which would have
 suggested the existence of a forced excitation in the flow associated with a constant
 Strouhal number .  Thus ,  apart from response due to broad band turbulent buf feting ,
 any peaks in the response curves of the flexible tubes can be interpreted as being
 self-excited ,  i . e .  due to fluidelastic instability (Parrondo 1992) .  This does not exclude ,
 however ,  the possibility of vortex-shedding activity induced by the oscillation of the
 tubes once they are set into motion .  Further discussion is presented in Section 4 . 2 .

 3 .  EXPERIMENTAL PROCEDURE AND RESULTS

 3 . 1 .  M E A S U R E M E N T S   I N  S T I L L  F L U I D

 Prior to each test ,  one tube of the third or fourth row was selected for monitoring .
 First ,  damping values of that tube were obtained by measuring the amplitude decay of
 the tube response after a small disturbance ,  both in still air and still water .  To avoid
 modulations in the time response (Weaver & Koroyannakis 1982 ;  Weaver & Yeung
 1984) ,  damping measurements in water were obtained while keeping rigid all the tubes
 except the one being monitored .  It was found that this procedure usually gave damping
 values within 15% of the ones obtained with the complete array being flexible ,  when
 comparing the amplitudes of the signal at the maximum value of consecutive
 modulations .  Damping values could be reliably obtained only for the first mode of
 vibration of the tubes .  It should be noted that it is notoriously dif ficult to measure
 damping in tube bundles ,  especially in the higher modes ,  because of coupling between
 the tubes .  This dif ficulty is aggravated in liquids because the fluid not only couples tube
 motion but possesses a dif ferent added mass for each mode of relative tube motion .
 The result is that a single tube mode is associated with a band of fluid coupled mode
 frequencies .  In a transient test of a flexible array ,  energy is transferred back and forth
 between tubes ,  producing significant modulations in amplitude decay .  The higher
 modes disappear too quickly to obtain reliable damping data .  Under external
 excitation ,  methods such as the half-power bandwidth of the frequency response
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 resonance peak are problematic because the underlying assumptions of a linear
 stationary response at a unique frequency are violated .

 Table 1 summarizes the values of the logarithmic decrement of damping measured in
 both still air ( d  A ) and water ( d  W ) for each test (lift direction) ,  together with the
 frequencies excited .  The measured frequencies in still water were the same in the lift
 and drag directions within 3% .  It is seen that damping values in water are about an
 order of magnitude greater than those in air .  Also ,  the frequencies ,   f W ,  excited in still
 water are about 25% smaller than the frequencies ,   f A ,  excited in still air ,  due to the
 added mass .  The corresponding added mass coef ficients  C M   may be calculated with the
 expression

 C M  5 F S  f A
 f W
 D 2

 2  1 G  4 m A

 r π d 2  .  (5)

 The average value of  C M   obtained from the data of Table 1 is 1 ? 18 ,  with a standard
 deviation of 0 ? 127 .  This value is close to 1 ? 25 ,  which is the value obtained from Moretti
 & Lowery’s (1976) plot of added mass coef ficient ,  measured for a triangular array of
 seven tubes ,  all rigid except the central one ,  with variable pitch-to-diameter ratio .

 3 . 2 .  T U B E  R E S P O N S E   A S   A  F U N C T I O N   O F  F L O W  V E L O C I T Y

 After the damping measurements were completed ,  the pump was run at progressively
 greater rotational speeds ,  from a suf ficiently low value with no appreciable tube
 vibration up to a flow rate well above the stability threshold .  At each flow velocity ,  the
 r . m . s .  power spectral density of the acceleration in both the streamwise and the
 transverse direction were recorded (Figure 4) .  These spectra usually showed significant
 response in separate bands of frequencies ,  each of them being associated with a
 dif ferent mode of vibration .  Each band contained one or more dominant peaks .  When
 the flow velocity was increased ,  the dominant peaks shifted slightly towards higher
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 Figure 4 .  Variation of the power spectral density of the acceleration with the upstream velocity  V U   of the
 cross-flow ,  for case D .  The accelerometer was oriented in the cross-flow direction and positioned at 0 ? 18 m

 from the tip of the tube .
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 frequencies and their amplitude did not vanish until they reached the upper limit of the
 associated band .  By then ,  more peaks usually appeared at the lower limit of the band ,
 which would subsequently follow the same process .  This behaviour has been observed
 in other investigations (Weaver & Koroyannakis 1982) .  An especially relevant fact is
 that in no case was a constant ratio observed between the frequency of the shifting
 spikes and the flow velocity (i . e .,  a constant Strouhal number) ,  not even for a short
 range of velocity ,  as would correspond to vorticity-type excitation .  This supports the
 interpretation of the response of the tubes as instability ,  as mentioned above in Section 2 .

 Response curves were obtained by choosing the highest peak for each mode in the
 displacement power spectra ,  after vectorial summation of the twice integrated signal
 from each accelerometer .  In general ,  the amplitudes of vibration in the streamwise and
 transverse directions were of the same order of magnitude ,  depending on the cross-flow
 velocity and on the frequency considered .  Since the accelerometers were not located at
 the position of maximum displacement of the tube ,  this maximum displacement had to
 be obtained by using the appropriate shape functions for each mode and configuration .
 For this purpose ,  a computer program was developed to solve Euler’s equation for the
 transverse vibrations of a beam with variable support conditions ,  including the ef fects
 of rotary inertia and shearing deformation ,  so that the natural frequencies and mode
 shape functions of the tubes could be calculated .  The dif ferences found between the
 frequencies predicted for the first mode and the frequencies measured with the tubes in
 air were always less than 1% .  Calculations also showed that ,  at least for the first three
 modes of the tubes in the present study ,  the ef fects of transverse shear and rotary
 inertia are negligible ,  as might be expected .  The mode shape functions in vacuum are
 not expected to be modified when the tubes are in still water ,  because in this case there
 is a uniform distribution of added mass along the tubes .  However ,  this may not be true
 in general for multi-span tubes subjected to nonuniform cross-flow ,  due to the possible
 ef fect of the flow velocity on added mass .  To check this ,  measurements were taken for
 support configuration A which consisted of varying the position of the accelerometers
 along the tubes while keeping a constant flow velocity .  These tests showed that the
 distortion of the shape functions calculated for vacuum conditions could be considered
 negligible in the range of velocities of interest in this study .

 3 . 3 .  C R I T I C A L  V E L O C I T I E S   F O R  E A C H  C A S E  T E S T E D

 Figures 5 to 14 show one of the response curves obtained for each position of the
 simple support plate ,  together with the mode shape functions calculated for the first
 three modes of vibration .  For case A ,  the tubes were cantilevered ,  for case B the
 simple support plate was located 0 ? 408  m from the free end of the tubes and ,  for the
 other cases ,  the support plate was progressively shifted towards the free end .  It is
 important to remember that only the 200  mm portion of the tubes next to the base is
 exposed to cross-flow ,  regardless of the simple support plate location .  Determination of
 the critical velocities from the response curves alone was not always straightforward
 and use was made of the acceleration spectra to assist in interpreting the results .  In
 general ,  instability is considered to occur when the slope of the amplitude-velocity
 curve increases abruptly and the tube response becomes organized to a whirling pattern
 at a single frequency .  Of course ,  this definition of critical velocity does not distinguish
 fluidelastic instability from vortex-shedding resonance as the cause of the peak .  The
 latter cause is eliminated by other arguments as discussed earlier ,  in Section 2 ,  and
 below in Section 4 . 2 .  Some brief explanations are given below for each case .  In spite of
 the complexity of some of the response curves ,  good repeatability was found between
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 tests for a given case .  Maximum dif ferences between critical velocities were less than
 5% ,  even when monitoring dif ferent tubes .

 3 . 3 . 1 .  Case A  ( Figure  5)

 The vibration amplitude for both the first and second modes increases slowly with the
 flow up to an upstream velocity of about 1  m / s .  For higher cross-flow velocities the
 response curves become much steeper ,  which indicates the development of fluidelastic
 instability for both modes .  Very high amplitudes are reached ,  as expected for
 cantilevered tubes .  The second mode appears to become unstable at about 1 ? 05  m / s ,
 slightly before the first mode (1 ? 09  m / s) .
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 Figure 5 .  Response curves for test A .

 3 . 3 . 2 .  Case B  ( Figure  6)

 Very small response and no sign of instability was observed in the first mode (not
 presented) and the second mode for this configuration .  However ,  though the maximum
 response amplitudes recorded for the third mode were small too (about 0 ? 3% of the
 tube diameter) ,  the evolution of the spectra and response curve suggests the
 development of instability for this mode .  The critical velocity was estimated to be
 1 ? 72  m / s .
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 3 . 3 . 3 .  Case C  ( Figure  7)
 Similar to case B ,  no evidence of instability was observed in the first or second modes ,
 whereas the third mode does appear to become unstable ,  though with very small
 response amplitude .  However ,  this time the response curve presents at least two
 separate zones with relatively large amplitudes ,  which suggests the existence of
 multiple instability regions .  The first one extends approximately between 1 ? 07  m / s and
 1 ? 31  m / s .  The second one starts at about 1 ? 67  m / s and appears to be ending at about
 2  m / s ,  though unfortunately the test was terminated before reaching that flow velocity .
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 Figure 7 .  Response curves for test C .

 3 . 3 . 4 .  Case D  ( Figure  8)
 Whereas the first mode remains stable in the range of flows tested ,  the second mode
 becomes unstable at a velocity of about 1 ? 73  m / s ,  reaching vibration amplitudes close
 to 5% of the tube diameter .  The response for the higher modes was always small ,  but
 again a closer analysis of the third mode shows the possible development of instability
 too ,  at about 1 ? 43  m / s .  Finally some persistent spikes were observed in the second
 mode frequency region of the acceleration spectra recorded (Figure 4) ,  in the range of
 velocities from about 0 ? 65 to 0 ? 71  m / s and afterwards from 1 ? 0 to 1 ? 32  m / s .  Though the
 response amplitudes associated are small (about 0 ? 2% of the tube diameter) ,  they may
 possibly be considered as secondary instability regions for that mode .
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 Figure 8 .  Response curves for test D .
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 3 . 3 . 5 .  Case E  ( Figure  9)

 In this case the instability was also observed in the second and third modes .  The second
 mode response shows relatively large amplitudes (up to 1% of the tube diameter)
 starting at about 0 ? 88  m / s ,  but they drop of f significantly at a velocity of about 1 ? 2  m / s .
 At that velocity the third mode is the one to become apparently unstable ,  though with
 much smaller oscillation amplitudes (less than 0 ? 1% of the tube diameter) .  Finally ,  the
 second mode shows a small peak in the region of 0 ? 6  m / s .
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 Figure 9 .  Response curves for test E .

 3 . 3 . 6 .  Case F  ( Figure  10)

 No significant response was observed except for the first mode .  Its response curve
 clearly shows the development of large amplitude oscillations (up to 18% of the tube
 diameter at their free end) starting at an upstream velocity of 1  m / s .  Also ,  some
 response in the first mode (1 ? 5% of the tube diameter) is observed between about 0 ? 78
 and 0 ? 9  m / s ,  which suggests the possible existence of a secondary unstable region .
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 3 . 3 . 7 .  Case G  ( Figure  11)

 The first mode response looks much like that of case F .  The first mode exhibits a clear
 peak in the range of velocities between 0 ? 78 and 0 ? 87 (the amplitude exceeds 3% of the
 tube diameter) .  For higher velocities the amplitude becomes very small again and
 finally large oscillations are developed from about 1 ? 31  m / s .  However in this case ,  the
 second mode apparently becomes unstable as well .  This is suggested by the sharp
 increase in response amplitude ,  at about 1 ? 1  m / s ,  in spite of the relatively small
 maximum amplitude levels (0 ? 6% of the tube diameter) .
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 Figure 11 .  Response curves for test G .

 3 . 3 . 8 .  Case H  ( Figure  12)

 A very similar behaviour is observed for this case .  The first mode develops significant
 oscillations from an upstream velocity of about 0 ? 65 to 0 ? 78  m / s .  Large oscillations are
 also observed at higher flows ;  the corresponding critical velocity was estimated at about
 1 ? 27  m / s .  Second mode amplitudes are small (less than 0 ? 5% of the tube diameter) ,  but
 the response curve and acceleration spectra recorded suggest the development of
 instability at about 1 ? 07  m / s .
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 3 . 3 . 9 .  Case I  ( Figure  13)
 In this case both the first and the second modes were found to become unstable .  The
 first mode is seen to become unstable at a critical velocity of about 1 ? 28  m / s ,  reaching
 amplitude values of over 3% of the tube diameter .  At higher flows ,  coinciding with a
 decrease in the first mode response ,  the second mode develops instability .  Though the
 greatest oscillations (3% of the tube diameter) are not reached till about 2 ? 1  m / s ,  the
 corresponding critical velocity is estimated to be 1 ? 81  m / s ,  after analysis of the
 acceleration spectra .  Also ,  the second mode response apparently presents a secondary
 instability region ,  with amplitudes up to 1% of the tube diameter in the flow velocity
 range between 1 ? 09 and 1 ? 34  m / s .
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 Figure 13 .  Response curves for test I .

 3 . 3 . 10 .  Case J  ( Figure  14)
 In this case the behaviour is similar to that for case I .  The first mode becomes unstable
 at a critical velocity of about 1 ? 18  m / s .  The second mode becomes unstable too ,  at a
 critical velocity of about 1 ? 48  m / s .  Additionally ,  the second mode shows a possible
 secondary instability region (oscillations of about 0 ? 5% of the tube diameter) ,
 approximately between 0 ? 95  m / s and 1 ? 09  m / s .
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 3 . 3 . 11 .  General discussion of Cases A – J

 To sum up ,  a number of the test cases were found to exhibit more that one clear peak
 in the response curves which could be interpreted as multiple regions of instability .
 Table 2 presents a summary of the upstream critical velocities established for each case
 and mode ,  including those corresponding to possible secondary instability regions .  The
 vibration frequencies associated with each critical velocity are also included ,  together
 with a reference number (from 1 to 36) .  The data were classified in three groups ,

 T ABLE  2
 Upstream critical velocities  V U   and frequency  f  at instability for each test

 Group*  Test  Mode  V U   (m / s)  f  (Hz)  Ref . **

 1  A  1  1 ? 09  12 ? 1  1
 A  2  1 ? 05  71 ? 4  2
 D  2  1 ? 73  167 ? 0  3
 F  1  1 ? 00  64 ? 3  4
 G  1  0 ? 78  63 ? 9  5
 G  1  1 ? 31  59 ? 8  6
 H  1  1 ? 27  56 ? 3  7
 I  1  1 ? 28  58 ? 1  8
 I  2  1 ? 81  175 ? 5  9
 J  1  1 ? 18  47 ? 2  10
 J  2  1 ? 48  140 ? 3  11

 2  B  3  1 ? 72  282 ? 0  12
 D  3  1 ? 43  235 ? 0  13
 E  2  0 ? 88  142 ? 0  14
 F  1  0 ? 78  64 ? 5  15
 G  2  1 ? 10  161 ? 5  16
 H  1  0 ? 65  57 ? 0  17
 H  2  1 ? 07  171 ? 0  18
 I  2  1 ? 09  160 ? 3  19
 J  2  0 ? 95  141 ? 8  20

 3  C  3  1 ? 07  285 ? 0  21
 C  3  1 ? 67  280 ? 0  22
 D  2  0 ? 65  168 ? 0  23
 D  2  1 ? 02  164 ? 5  24
 E  2  0 ? 60  145 ? 5  25
 E  3  1 ? 17  311 ? 0  26

 4  C  3  1 ? 31  296 ? 0  27
 D  2  0 ? 71  170 ? 0  28
 D  2  1 ? 32  180 ? 8  29
 E  2  0 ? 67  147 ? 0  30
 E  2  1 ? 17  149 ? 0  31
 F  1  0 ? 90  65 ? 7  32
 G  1  0 ? 87  65 ? 9  33
 H  1  0 ? 78  59 ? 5  34
 I  2  1 ? 34  165 ? 4  35
 J  2  1 ? 09  141 ? 6  36

 *  Group 1 :   A  .  2% d ;  Group 2 :  0 ? 3% d  ,  A  ,  2% d ;  Group 3 :   A  ,  0 ? 3% d ;  Group 4 :  ending
 limit of oscillations .   A  5  maximum amplitude of oscillation ;   d  5  tube diameter .

 **  Reference numbers in Figures 15 and 16 .
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 depending on the maximum response amplitude observed when increasing the
 cross-flow velocity from the critical value :  group 1 ,  amplitudes greater than 2% of the
 tube diameter ;  group 2 ,  amplitudes between 0 ? 3 and 2% of the tube diameter ;  and
 group 3 ,  amplitudes less than 0 ? 3% of the tube diameter .  A fourth group gives the
 velocity at the upper limit of the apparent secondary instability regions .  A detailed
 discussion of the possible interpretation of these response peaks and data groupings is
 left to the next section .

 The frequencies excited at each stability threshold (lower limits only) were compared
 to the natural frequencies of the tubes in air by means of equation (5) .  The added mass
 coef ficients so obtained showed a mean value of 1 ? 45 with a standard deviation of 0 ? 32
 from a total of 26 data .  The most discordant data were those of case A ,  which gave
 unexpectedly low added mass coef ficients of 0 ? 59 for the first mode and 0 ? 72 for the
 second .  When these two data were not included in the computation ,  the average value
 found was 1 ? 55 with standard deviation of 0 ? 20 .  Added mass coef ficients were also
 calculated with respect to the lower limit of the band of frequencies associated with
 each mode of vibration in the acceleration spectra recorded .  A total of 24 data led to a
 mean value of 1 ? 93 with a standard deviation of 0 ? 25 .  That mean value is close to a
 value of 2 ? 0 ,  which is the upper bound of the added mass coef ficient as predicted by
 Chen’s (1977) potential flow theory for an array of 19 cylinders in still fluid .

 There is some question as to the validity of using equation (5) when the fluid is
 flowing because this assumes that the frequency reduction from the value in air is
 entirely due to fluid added mass ,  i . e .,  the possible ef fects of fluid stif fness are ignored
 and cannot be accounted for .  While fluid stif fness may explain the low values of added
 mass observed for case A ,  it seems more likely that these are due to the nonlinear
 ef fects of large amplitude motions .  In any event ,  the bulk of the experimental data
 show that a good estimate of the lowest observed tube frequency under flow conditions
 can be obtained by using the highest added mass coef ficient computed from potential
 flow theory with the theoretical  in  y  acuo  tube natural frequency for a given mode .

 4 .  STABILITY MAPS AND DISCUSSION

 4 . 1 .  P L O T   O F  D A T A   I N  S T A B I L I T Y  M A P S

 As mentioned above ,  typical design correlations against fluidelastic instability have the
 general expression shown in equation (1) ,  which is valid for uniform flows across the
 total length of the tubes .  In case of tubes with partial admission ,  such as the ones tested
 in this investigation ,  the appropriate design expression is given by equation (3) .
 Equation (1) may be considered as the particular case of equation (3) when the energy
 fraction ,   S i ,  equals unity .  With this perspective ,  the data obtained from the present
 experiments may be plotted on a traditional stability map ,  using the critical reduced
 velocities and the mass-damping parameter divided by the energy fraction ,  which is
 subsequently called the mass-damping-energy fraction parameter ,  MDE (Parrondo  et
 al .  1993) .  In this way ,  classical stability maps such as the ones presented by Weaver &
 Fitzpatrick (1988) are also valid for the case of tubes with partial admission ,  by
 considering the MDE parameter instead of the mass-damping parameter as the
 ordinate .

 In order to obtain a stability map from the data measured ,  it was necessary to
 determine the values of the MDE parameter corresponding to each test .  For this



 J .  L .  PARRONDO  ET AL . 174

 purpose ,  the program used to obtain the natural frequencies and mode shapes of the
 tubes was augmented for evaluation of the energy fraction ,  given by equation (4) .  Two
 dif ferent MDE parameters were considered :  one that used the damping values
 measured with the tubes in still air (MDE A ) ,  and another one with the damping values
 measured in still water (MDE W ) .  In both cases the mass per unit length of the tubes
 was modified with an added mass coef ficient  C M  5  1 ? 55 ,  which was the average value at
 critical conditions obtained from the present tests .

 Since damping values had been measured only for the first mode of vibration of the
 tubes ,  damping values for the higher modes had to be estimated .  The damping values
 measured in air (for MDE A ) were considered to be the same for all modes ,  because the
 damping added by the air is negligible and the structural and material components of
 the damping of structures may be reasonably assumed to be independent of the
 frequency .  However ,  this is not so in the case of the liquid damping ,  which in fact was
 the most important component of damping with the tubes immersed in water (MDE W ) .
 Neglecting the structural damping with respect to the damping added by water ,  and
 assuming the case of an isolated single tube vibrating in still fluid ,  with a constant drag
 coef ficient and the same maximum amplitude of vibration for each mode ,  the damping
 d  W ,i  corresponding to the  i th mode of vibration may be determined (Blevins 1977) by

 d  W ,i

 d  W , 1
 5

 E l

 0
 u f  3

 i  ( x ) u  d x

 E l

 0
 u f  3

 1 ( x ) u  d x

 E l

 0
 f  2

 1 ( x )  d x

 E l

 0
 f  2

 i  ( x )  d x

 .  (6)

 To calculate the MDE W   parameters ,  equation (6) was used with  d  W , 1  equal to the
 damping values measured with the tubes in still water (see discussion in Section 3 . 1) .

 The values obtained for both MDE parameters ,  corresponding to the critical modes
 found in each test ,  are presented in Table 3 .  The critical velocity data are plotted in

 T ABLE  3
 Calculated values of the natural frequency  f A ,  energy fraction  S i   and mass-damping-energy

 fraction parameters MDE A   and MDE W   corresponding to the modes excited in each test

 Case  Mode  f A   (Hz)  S i  MDE A  MDE W

 A  1  14 ? 0  0 ? 007  2 ? 405  29 ? 147
 A  2  87 ? 8  0 ? 118  0 ? 140  1 ? 486
 B  3  447 ? 1  0 ? 747  0 ? 026  0 ? 297
 C  3  417 ? 9  0 ? 784  0 ? 051  0 ? 394
 D  2  236 ? 0  0 ? 151  0 ? 183  0 ? 779
 D  3  367 ? 7  0 ? 658  0 ? 042  0 ? 232
 E  2  212 ? 1  0 ? 476  0 ? 078  0 ? 368
 E  3  429 ? 5  0 ? 134  0 ? 278  0 ? 934
 F  1  87 ? 6  0 ? 113  0 ? 157  1 ? 530
 G  1  85 ? 8  0 ? 129  0 ? 357  2 ? 030
 G  2  225 ? 2  0 ? 224  0 ? 205  0 ? 770
 H  1  79 ? 4  0 ? 117  0 ? 235  1 ? 796
 H  2  245 ? 0  0 ? 344  0 ? 080  0 ? 493
 I  1  74 ? 0  0 ? 104  0 ? 354  1 ? 709
 I  2  236 ? 1  0 ? 354  0 ? 104  0 ? 484
 J  1  63 ? 9  0 ? 079  0 ? 238  2 ? 470
 J  2  206 ? 4  0 ? 310  0 ? 061  0 ? 614
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 Figure 15 .  Stability map of the experimental data and comparison with the stability boundary of Weaver &
 Fitzpatrick (1988) .  Damping measured in air .   e ,  Data from group 1 of Table 2 ;   s ,  data from group 2 of

 Table 2 ;   h ,  data from group 3 of Table 2 ;   3 ,  data from group 4 of Table 2 .

 Figures 15 and 16 against the MDE A   and the MDE W   parameters ,  respectively .  Each
 data point is labelled with a reference number which permits identification from Table
 2 .  In these graphs ,  the critical velocities are expressed in terms of the reduced pitch
 velocities  V P / (  fd ) ,  obtained with the expression

 V P

 fd
 5

 p

 p  2  d

 V U

 fd
 5  2 ? 74

 V U

 fd
 ,  (7)

 where  V P   and  V U   are the pitch and upstream velocities ,   f  is the associated vibration
 frequency from Table 2 ,  and  p  is the pitch of the array .  Both stability plots look similar ,
 as they are basically shifted one relative to the other by about one decade ,  due to the
 dif ferent definitions of damping used .

 In both plots a curve has been drawn through the data ,  taking into consideration the
 critical velocities corresponding to the onset (Table 2 ,  groups 1 ,  2 and 3) or to the
 disappearance (Table 2 ,  group 4) of the response peak when increasing the cross-flow .
 Some scatter is observed in the data which might be attributed to experimental
 uncertainty but also to the slight changes in the relative positions between tubes that
 occur when varying the simple support location ,  which may have a significant ef fect
 according to the studies of Andjelic ́  & Popp (1989) and Paı ̈ doussis  et al .  (1995) .
 However both stability maps clearly show what may be considered as multiple
 instability regions for the lower range of the MDE parameter .  Each secondary region is
 associated with a small range of the reduced critical pitch velocity (1 ? 15  Ú  0 ? 1 ,
 1 ? 9  Ú  0 ? 25 and 3 ? 3  Ú  0 ? 4 respectively) .  It is important to note that the lower secondary
 region is primarily associated with the smallest response amplitudes (group 3 in Table
 2) ,  whereas the second region is associated primarily with data corresponding to
 intermediate response amplitude (group 2 in Table 2) .  The upper secondary loop ,  as
 well as the stability boundary for larger MDE parameters corresponds to large
 response amplitudes (group 1 in Table 3) .  Thus ,  each successive response region for
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 Figure 16 .  Stability map of the experimental data and comparison with the stability boundaries of
 Au-Yang  et al .  (1991) and Pettigrew & Taylor (1991) .  Damping measured in water .   e ,  Data from group 1 of
 Table 2 ;   s ,  data from group 2 of Table 2 ;   h ,  data from group 3 of Table 2 ;   3 ,  data from group 4 of Table 2 .

 reducing critical velocity is generally associated with smaller response amplitudes .  Such
 dependence between the response amplitude and the critical velocity associated with
 each region may explain why multiple regions have been so rarely documented in the
 technical literature .  The interpretation of these observations is presented in the
 following section .

 4 . 2 .  D I S C U S S I O N

 The flow-induced response characteristics observed in these experiments and presented
 in the stability plots of Figures 15 and 16 could possibly be interpreted as multiple
 regions of instability at low values of the mass-damping parameter .  The theoretical
 models of Lever & Weaver (1982) and Price & Paı ̈ doussis (1986) as well as subsequent
 versions reviewed by Price (1995) all predict the existence of multiple instability
 regions .  These have also been observed in experiments ,  for example ,  by Chen &
 Jendrzejczyk (1983) and Andjelic ́   et al .  (1992) .  However ,  Paı ̈ doussis  et al .  (1995) have
 recently shown that damping and the existence of deviations of as little as 2% of a tube
 diameter from perfect array geometry can eliminate these multiple instability regions
 or make them very dif ficult to find .  On the basis of their results ,  these latter authors
 argue that multiple instability regions are  practically  nonexistent .  This position is
 reinforced by the theoretical work of Granger & Paı ̈ doussis (1995) which presents an
 important extension of previous theoretical models by deriving unsteady ef fects from
 the Navier-Stokes equations .  The resulting ‘‘quasi-unsteady’’ model predicts no
 multiple instability regions .  On comparison of their theoretical predictions with
 experiments for square-in line arrays ,  Granger & Paı ̈ doussis (1995) explain data which
 might be considered indicative of a secondary stability region as being due to vortex
 shedding .  There is certainly no question that fluidelastic instability and vortex shedding
 exist as distinct excitation mechanisms and that these may overlap for tube arrays in
 water flows [see ,  for example ,  Weaver & Yeung ,  (1984) and Weaver & Fitzpatrick
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 (1988)] .  With regard to perfect array geometry ,  this is virtually impossible to maintain
 for long flexible tubes with multiple supports .  In spite of this ,  the multiple instability
 regions were readily detectable in the present study .

 In an attempt to identify the excitation mechanism in the present case ,  Strouhal
 numbers were calculated for each of the response peak regions .  Based on the upstream
 velocity at the peak ,  the Strouhal numbers are 0 ? 85  Ú  0 ? 1 ,  1 ? 45  Ú  0 ? 2 and 2 ? 4  Ú  0 ? 3 ,
 from the highest to the lowest region respectively .  The Strouhal number data
 summarized by Weaver & Fitzpatrick (1988) suggest a value in the range 1 ? 1 to 1 ? 5
 while the more recent data of Chen (1993) gives a value closer to 1 ? 7 .  Thus ,  the middle
 response region in the present study might be attributable to a vortex-shedding but the
 other two regions remain unexplained .  However ,  with regard to a vortex-shedding
 explanation ,  it is important to note that careful pressure measurements ,  as discussed in
 Section 2 ,  failed to indicate the presence of  any  constant Strouhal number phenomenon
 in the absence of tube motion .  An interesting corroboration for this observation is
 provided by the flow visualization study of Price  et al .  (1995) for a parallel triangular
 array with a pitch ratio of 1 ? 375 .  They observed no vortex shedding when the array was
 rigid but found a combination of vortex shedding and fluidelastic instability when one
 tube was flexible in the array .  This points out the dif ficulty of attribution of excitation
 mechanism from flow visualization .  Vortices will always be shed from an oscillating
 bluf f body at the oscillation frequency but it cannot easily be determined whether the
 vortices are caused by ,  or are the cause of ,  the oscillations .  If there are no periodic
 coherent vortex structures in the absence of structural motion ,  then the motion
 observed must be ‘‘fluidelastic’’ in the true sense of the word ,  i . e .,  elastic structural
 motion generates flow periodicity at the same frequency which becomes regenerative
 (self-excited) through mutual interaction .  At least in this sense ,  the multiple response
 regions observed in the present study may be called ‘‘fluidelastic instability’’ .  Whether
 this fluidelastic mechanism is distinct from that producing very large amplitude
 damaging oscillations in heat exchanger tube arrays remains an open question .

 It is also an open question as to whether ,  under dif ferent support arrangements ,  the
 amplitudes of vibration in the secondary instability regions will always be so small or
 will be incapable of generating damaging fretting wear .  All of the data in the lower two
 stability regions correspond to modes higher than the first and ,  therefore ,  to higher
 frequencies .  Thus ,  while the vibration amplitudes are very small ,  the local tube
 velocities and the modal energies are not .  For example ,  the maximum tube velocity in
 test C (group 3 ,  third mode ,  285 Hz) is actually greater than that for the first mode at
 instability in test A (group 1 ,  12 Hz) .  Establishing criteria for fretting wear damage is
 beyond the scope of this paper .  One thing is clear ,  the vibration amplitudes in the
 lower stability regions are small ,  and if maximum r . m . s .  tube displacement is accepted
 as a valid criterion for tube damage ,  then the present results agree with the conclusions
 of Paı ̈ doussis  et al .  (1995) ,  these lower instability regions are  practically  nonexistent .

 4 . 3 .  C O M P A R I S O N   W I T H  E M P I R I C A L  D E S I G N  C R I T E R I A

 The experimental data obtained were compared to the predictions of some commonly
 used empirical design correlations that follow equation (1) for uniform cross-flow or
 equation (3) for cross-flow with partial admission .  These correlations are the ones
 proposed by Weaver & Fitzpatrick (1988) ,  Pettigrew & Taylor (1991) and Au-Yang  et
 al .  (1991) .  All of them were obtained as safe stability boundaries of experimental data
 reported in the technical literature .  Weaver & Fitzpatrick proposed dif ferent correla-
 tions for each of the four standard array geometries ,  whereas the other two design
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 T ABLE  4
 Parameters proposed to predict pitch critical velocities with equation (1)

 Authors  Range  K  a

 Au-Yang  et al .  (1991)  ;   m d W  / ( r d  2 )  4 ? 0  0 ? 5
 Pettigrew & Taylor (1991)  ;   m d W  / ( r d  2 )  3 ? 0  0 ? 5
 Weaver & Fitzpatrick (1988)  m d A / ( r d  2 )  .  0 ? 3  4 ? 8  0 ? 3

 m d A / ( r d  2 )  ,  0 ? 3  1 ? 0  0 ? 0

 criteria make no distinction .  The corresponding  K  and  a   coef ficients (for the parallel
 triangular array in the case of Weaver & Fitzpatrick’s correlation) are summarized in
 Table 4 .

 Figure 15 presents the stability boundary corresponding to Weaver & Fitzpatrick
 (1988) ,  who referred the mass-damping parameter to the measurements of damping in
 vacuum (air) .  For values of the mass-damping parameter less than 0 ? 3 ,  these authors
 established a constant critical pitch velocity equal to 1 ? 0 ,  which is remarkably close to
 the lower instability region shown by the data .  Also ,  the value of 0 ? 3 separating the
 ranges of the mass-damping parameter is nearly coincident with the upper limit of the
 secondary instability regions .  Clearly ,  Weaver & Fitzpatrick’s stability boundary fits the
 stability boundary obtained in this study very well .

 Figure 16 presents the stability boundaries corresponding to the criteria proposed by
 Pettigrew & Taylor (1991) and Au-Yang  et al .  (1991) ,  both of whom considered the
 values of damping measured in still fluid for the mass-damping parameter .  Both of
 them assume in equation (1) an exponent  a  5  0 ? 5 (Connors type) and so their stability
 boundaries are parallel straight lines in the log – log representation .  If it is accepted that
 the maximum r . m . s .  tube displacement must exceed something like 2% of a tube
 diameter to produce damaging fretting wear ,  then the criterion of Pettigrew & Taylor
 (1991) captures all of the significant instability points except point 5 .  While this point
 corresponds to a so-called ‘‘secondary’’ instability region ,  the vibration amplitudes
 reached 3 ? 5% of a tube diameter ,  which is typically considered to be unacceptable .  On
 the other hand ,  the criterion of Au-Yang  et al .  (1991) ,  misses points 2 ,  3 ,  4 ,  5 and 11 .
 All of these points correspond to unacceptably large vibration levels .  It may be that
 these criteria are somewhat unconservative at low mass-damping parameters ,  especially
 that of Au-Yang  et al .  (1991) ,  as a result of their having been established primarily on
 more idealized experiments with uniform flow over single span tubes .

 5 .  CONCLUSIONS

 An experimental study was conducted to determine the ef fects of nonuniform
 cross-flow on the stability behaviour of a tube array in the low mass-damping
 parameter range .  Tests were conducted in a water tunnel on a parallel triangular tube
 array with a pitch-to-diameter ratio of 1 ? 574 and cross-flow with partial admission
 (uniform flow over part of the tube length) .  Dif ferent natural frequencies and mode
 shapes were obtained by using a propped cantilever tube arrangement and moving the
 intermediate simple support (prop) along the tubes .  Thus ,  the general configuration
 was 2-span tubes with boundary conditions fixed-pinned-free and flow across 30% of
 the tube length near the fixed end .  The results are plotted on a stability map and
 compared with stability criteria from the literature .  The principal conclusions are as
 follows .
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 1 .  The stability behaviour of multi-span tube arrays with a nonuniform liquid
 cross-flow is similar to that of a single span array subjected to uniform liquid cross-flow
 except that the critical mode depends on the flow distribution relative to the modal
 displacement along the tubes .  At least for the range of parameters of the present study ,
 this ef fect can be accounted for by using the energy fraction concept of previous
 studies .

 2 .  The reduced velocity for fluidelastic instability in the critical mode is essentially
 independent of the mass-damping parameter at low values of this parameter .  This
 agrees with earlier experimental results for uniform liquid flows across single-span tube
 arrays but contrasts with results for gas flows which show significant dependence on the
 mass-damping parameter .

 3 .  The results of the present study suggest multiple regions of instability at low
 mass-damping parameters .  These regions cannot simply be attributed to vortex-
 shedding resonance ,  as no periodic excitation at the appropriate Strouhal numbers
 could be measured on rigid tubes .  However ,  at least in the present study ,  these lower
 regions of instability were associated with very small displacement amplitudes .  If
 displacement amplitudes were to be taken as an acceptance criterion ,  these lower
 regions of instability may be considered as  practically  non-existent ,  in agreement with
 Paı ̈ doussis  et al .  (1995) .

 4 .  When the energy fraction for the critical mode is used in the mass-damping
 parameter ,  the empirical stability criterion presented by Weaver & Fitzpatrick (1988)
 fit the present data quite well .  If the lower instability regions are ignored ,  the criterion
 of Pettigrew & Taylor (1991) also captures most of the present data .
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 APPENDIX :  NOMENCLATURE

 A  maximum amplitude of oscillation
 C M  added mass coef ficient
 d  diameter of tubes
 f  frequency of vibration
 f A  natural frequency of tubes  in  y  acuo
 f W  frequency of tubes in water
 i  i th mode of vibration (subindex)
 K  coef ficient in equations (1) ,  (2) and (3)
 l  length of tubes
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 m  mass of tubes per unit length ,  added mass included
 m A  m  with no added mass
 MDE  mass-damping-energy fraction parameter ,   m d  / ( r d  2 S i )
 MDE A  MDE with  d  5  d  A
 MDE W  MDE with  d  5  d  W
 p  pitch of the array
 S i  energy fraction [equation (4)]
 V  critical flow velocity
 V P  pitch critical flow velocity
 V U  upstream critical flow velocity
 x  coordinate along tubes
 a  exponent in equations (1) and (3)
 d  logarithmic decrement of damping
 d  A  d   of tubes in still air
 d  W  d   of tubes in still water
 r  density of water
 f  i ( x )  shape function of tubes
 c  ( x )  cross-flow distribution along tubes


